direct product, metabelian, soluble, monomial, A-group
Aliases: C22×C32⋊2C8, C62⋊4C8, (C2×C62).6C4, C32⋊6(C22×C8), C62.19(C2×C4), C23.4(C32⋊C4), C3⋊Dic3.34C23, (C3×C6)⋊5(C2×C8), C2.3(C22×C32⋊C4), (C2×C3⋊Dic3).23C4, C3⋊Dic3.54(C2×C4), (C3×C6).34(C22×C4), C22.19(C2×C32⋊C4), (C22×C3⋊Dic3).13C2, (C2×C3⋊Dic3).175C22, SmallGroup(288,939)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C32⋊2C8 — C2×C32⋊2C8 — C22×C32⋊2C8 |
C32 — C22×C32⋊2C8 |
Generators and relations for C22×C32⋊2C8
G = < a,b,c,d,e | a2=b2=c3=d3=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ede-1=cd=dc, ece-1=c-1d >
Subgroups: 448 in 130 conjugacy classes, 54 normal (9 characteristic)
C1, C2, C2, C3, C4, C22, C6, C8, C2×C4, C23, C32, Dic3, C2×C6, C2×C8, C22×C4, C3×C6, C3×C6, C2×Dic3, C22×C6, C22×C8, C3⋊Dic3, C3⋊Dic3, C62, C22×Dic3, C32⋊2C8, C2×C3⋊Dic3, C2×C62, C2×C32⋊2C8, C22×C3⋊Dic3, C22×C32⋊2C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C2×C8, C22×C4, C22×C8, C32⋊C4, C32⋊2C8, C2×C32⋊C4, C2×C32⋊2C8, C22×C32⋊C4, C22×C32⋊2C8
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 41)(8 42)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)(49 61)(50 62)(51 63)(52 64)(53 57)(54 58)(55 59)(56 60)(65 76)(66 77)(67 78)(68 79)(69 80)(70 73)(71 74)(72 75)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 89)(88 90)
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 41)(24 42)(25 88)(26 81)(27 82)(28 83)(29 84)(30 85)(31 86)(32 87)(33 93)(34 94)(35 95)(36 96)(37 89)(38 90)(39 91)(40 92)(49 76)(50 77)(51 78)(52 79)(53 80)(54 73)(55 74)(56 75)(57 69)(58 70)(59 71)(60 72)(61 65)(62 66)(63 67)(64 68)
(2 75 27)(4 29 77)(6 79 31)(8 25 73)(10 84 50)(12 52 86)(14 88 54)(16 56 82)(18 60 92)(20 94 62)(22 64 96)(24 90 58)(34 66 46)(36 48 68)(38 70 42)(40 44 72)
(1 74 26)(2 75 27)(3 28 76)(4 29 77)(5 78 30)(6 79 31)(7 32 80)(8 25 73)(9 83 49)(10 84 50)(11 51 85)(12 52 86)(13 87 53)(14 88 54)(15 55 81)(16 56 82)(17 59 91)(18 60 92)(19 93 61)(20 94 62)(21 63 95)(22 64 96)(23 89 57)(24 90 58)(33 65 45)(34 66 46)(35 47 67)(36 48 68)(37 69 41)(38 70 42)(39 43 71)(40 44 72)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
G:=sub<Sym(96)| (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60)(65,76)(66,77)(67,78)(68,79)(69,80)(70,73)(71,74)(72,75)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,89)(88,90), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42)(25,88)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,93)(34,94)(35,95)(36,96)(37,89)(38,90)(39,91)(40,92)(49,76)(50,77)(51,78)(52,79)(53,80)(54,73)(55,74)(56,75)(57,69)(58,70)(59,71)(60,72)(61,65)(62,66)(63,67)(64,68), (2,75,27)(4,29,77)(6,79,31)(8,25,73)(10,84,50)(12,52,86)(14,88,54)(16,56,82)(18,60,92)(20,94,62)(22,64,96)(24,90,58)(34,66,46)(36,48,68)(38,70,42)(40,44,72), (1,74,26)(2,75,27)(3,28,76)(4,29,77)(5,78,30)(6,79,31)(7,32,80)(8,25,73)(9,83,49)(10,84,50)(11,51,85)(12,52,86)(13,87,53)(14,88,54)(15,55,81)(16,56,82)(17,59,91)(18,60,92)(19,93,61)(20,94,62)(21,63,95)(22,64,96)(23,89,57)(24,90,58)(33,65,45)(34,66,46)(35,47,67)(36,48,68)(37,69,41)(38,70,42)(39,43,71)(40,44,72), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)>;
G:=Group( (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(49,61)(50,62)(51,63)(52,64)(53,57)(54,58)(55,59)(56,60)(65,76)(66,77)(67,78)(68,79)(69,80)(70,73)(71,74)(72,75)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,89)(88,90), (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42)(25,88)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,93)(34,94)(35,95)(36,96)(37,89)(38,90)(39,91)(40,92)(49,76)(50,77)(51,78)(52,79)(53,80)(54,73)(55,74)(56,75)(57,69)(58,70)(59,71)(60,72)(61,65)(62,66)(63,67)(64,68), (2,75,27)(4,29,77)(6,79,31)(8,25,73)(10,84,50)(12,52,86)(14,88,54)(16,56,82)(18,60,92)(20,94,62)(22,64,96)(24,90,58)(34,66,46)(36,48,68)(38,70,42)(40,44,72), (1,74,26)(2,75,27)(3,28,76)(4,29,77)(5,78,30)(6,79,31)(7,32,80)(8,25,73)(9,83,49)(10,84,50)(11,51,85)(12,52,86)(13,87,53)(14,88,54)(15,55,81)(16,56,82)(17,59,91)(18,60,92)(19,93,61)(20,94,62)(21,63,95)(22,64,96)(23,89,57)(24,90,58)(33,65,45)(34,66,46)(35,47,67)(36,48,68)(37,69,41)(38,70,42)(39,43,71)(40,44,72), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96) );
G=PermutationGroup([[(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,41),(8,42),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37),(49,61),(50,62),(51,63),(52,64),(53,57),(54,58),(55,59),(56,60),(65,76),(66,77),(67,78),(68,79),(69,80),(70,73),(71,74),(72,75),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,89),(88,90)], [(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,41),(24,42),(25,88),(26,81),(27,82),(28,83),(29,84),(30,85),(31,86),(32,87),(33,93),(34,94),(35,95),(36,96),(37,89),(38,90),(39,91),(40,92),(49,76),(50,77),(51,78),(52,79),(53,80),(54,73),(55,74),(56,75),(57,69),(58,70),(59,71),(60,72),(61,65),(62,66),(63,67),(64,68)], [(2,75,27),(4,29,77),(6,79,31),(8,25,73),(10,84,50),(12,52,86),(14,88,54),(16,56,82),(18,60,92),(20,94,62),(22,64,96),(24,90,58),(34,66,46),(36,48,68),(38,70,42),(40,44,72)], [(1,74,26),(2,75,27),(3,28,76),(4,29,77),(5,78,30),(6,79,31),(7,32,80),(8,25,73),(9,83,49),(10,84,50),(11,51,85),(12,52,86),(13,87,53),(14,88,54),(15,55,81),(16,56,82),(17,59,91),(18,60,92),(19,93,61),(20,94,62),(21,63,95),(22,64,96),(23,89,57),(24,90,58),(33,65,45),(34,66,46),(35,47,67),(36,48,68),(37,69,41),(38,70,42),(39,43,71),(40,44,72)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)]])
48 conjugacy classes
class | 1 | 2A | ··· | 2G | 3A | 3B | 4A | ··· | 4H | 6A | ··· | 6N | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 9 | ··· | 9 | 4 | ··· | 4 | 9 | ··· | 9 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 |
type | + | + | + | + | - | + | |||
image | C1 | C2 | C2 | C4 | C4 | C8 | C32⋊C4 | C32⋊2C8 | C2×C32⋊C4 |
kernel | C22×C32⋊2C8 | C2×C32⋊2C8 | C22×C3⋊Dic3 | C2×C3⋊Dic3 | C2×C62 | C62 | C23 | C22 | C22 |
# reps | 1 | 6 | 1 | 6 | 2 | 16 | 2 | 8 | 6 |
Matrix representation of C22×C32⋊2C8 ►in GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 46 | 46 | 72 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 27 | 0 | 1 |
0 | 0 | 46 | 0 | 72 | 72 |
63 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 46 | 46 | 71 | 72 |
0 | 0 | 32 | 19 | 27 | 0 |
0 | 0 | 19 | 21 | 27 | 0 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,46,0,0,0,1,0,46,0,0,0,0,0,72,0,0,0,0,1,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,46,0,0,72,72,27,0,0,0,0,0,0,72,0,0,0,0,1,72],[63,0,0,0,0,0,0,72,0,0,0,0,0,0,0,46,32,19,0,0,0,46,19,21,0,0,72,71,27,27,0,0,1,72,0,0] >;
C22×C32⋊2C8 in GAP, Magma, Sage, TeX
C_2^2\times C_3^2\rtimes_2C_8
% in TeX
G:=Group("C2^2xC3^2:2C8");
// GroupNames label
G:=SmallGroup(288,939);
// by ID
G=gap.SmallGroup(288,939);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,56,80,9413,362,12550,1203]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^3=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*d*e^-1=c*d=d*c,e*c*e^-1=c^-1*d>;
// generators/relations